Building of Heat Kernel on Non-Compact Homogeneous Spaces

نویسندگان

  • V. Mikheyev
  • I. Shirokov
چکیده

Method of the solution of the main problem of homogeneous spaces thermodynamics on non-compact spaces in the case of non-compact homogeneous spaces is presented in the article. The method is based on the formalism of coadjoint orbits. In that article we present algorithm that allows e ciently evaluate heat kernel on non-compact homogeneous spaces. The method is illustrated with non-trivial example. c © Electronic Journal of Theoretical Physics. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Coadjoint Orbits in the Thermodynamics of Non-Compact Manifolds

Method of the solution of the main problem of homogeneous spaces thermodynamics for non-compact spaces in the case of non-compact Lie groups is presented in the article. The method is based on the method of coadjoint orbits. The formula that allows efficiently evaluate heat kernel on non-compact spaces is obtained. The method is illustrated by non-trivial example. c © Electronic Journal of Theo...

متن کامل

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

Upper Bounds for the Spectral Function on Homogeneous Spaces via Volume Growth

We use the so-called spectral embedding to give upper bounds on the spectral function of the Laplace-Beltrami operator on homogeneous spaces in terms of the volume growth of balls. In the case of compact manifolds, our bounds extend the 1980 lower bound of Peter Li [Li80] for the smallest positive eigenvalue to all eigenvalues. We also improve Li’s bound itself. Our bounds translate to explicit...

متن کامل

A remark on Remainders of homogeneous spaces in some compactifications

‎We prove that a remainder $Y$ of a non-locally compact‎ ‎rectifiable space $X$ is locally a $p$-space if and only if‎ ‎either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact‎, ‎which improves two results by Arhangel'skii‎. ‎We also show that if a non-locally compact‎ ‎rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal‎, ‎then...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006